Concept C2.4
AI Literacy

Analyzing non-traditional data

Examine data beyond numbers, including sounds, textures, and text. Categorize sensory inputs, track word frequencies, and analyze data from sensors and IoT devices to identify patterns and trends.

K–2 Competencies

Analyze sensory data by counting occurrences of sounds (e.g., claps or animal noises).

K-2.C.2.4a

Categorize sensory data by type (e.g., loud vs. soft).

K-2.C.2.4b

Sort and compare objects based on textures (e.g., smooth, rough, or bumpy).

K-2.C.2.4c

Classroom resources

Classroom Tip
Getting Started

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

3–5 Competencies

Identify word frequencies from a simple text (e.g., paragraph or story).

3-5.C.2.4a

Collect and analyze simple sensor data (e.g., temperature readings over a day).

3-5.C.2.4b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

6–8 Competencies

Compare word frequencies across multiple texts to identify patterns and create simple visualizations from that text data.

6-8.C.2.4a

Explore patterns in audio data (e.g., analyzing sound waves for volume and frequency).

6-8.C.2.4b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

9–10 Competencies

Analyze data from sensors and IoT devices to track trends and monitor changes over time. e.g., smart thermostats and lighting systems for energy monitoring, wearable fitness trackers for health and activity data

9-10.C.2.4a

Understand that geographic data can be visualized using maps, and it can be represented as points (e.g., latitude and longitude) and areas (e.g., GeoJSON).

9-10.C.2.4b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

11–12 Competencies

Generate a word cloud of a given text after standardizing (e.g., all lower case), stemming, and removing stop words.

11-12.C.2.4a

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

Classroom resources

Support other teachers by sharing a resource

Do you have a lesson plan, video, or tip that could help others teaching this topic?

Developed by our coalition

Coalition organizers

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share a classroom resource

Suggesting a resource helps students around the world learn essential data science skills.

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.