Substrand C3

Variability in Data

Variability is omnipresent within data and datasets. Working with data depends on understanding, explaining, and quantifying variability of all forms (variability within a group, between different groups, or between samples).

Substrand C3

Variability in Data

Variability is omnipresent within data and datasets. Working with data depends on understanding, explaining, and quantifying variability of all forms (variability within a group, between different groups, or between samples).

Concept C3.1
Concept C3.1

Describing variability

Identify differences within data by sorting, grouping, and organizing characteristics. Use statistical and simulation methods to represent and analyze variability, connecting it to real-world uncertainty and probabilistic processes.

Concept C3.1
Concept C3.1

Describing variability

Identify differences within data by sorting, grouping, and organizing characteristics. Use statistical and simulation methods to represent and analyze variability, connecting it to real-world uncertainty and probabilistic processes.

Concept C3.2
Concept C3.2

Comparing variability

Examine differences between groups by analyzing measures of spread, such as range and standard deviation. Utilize visualizations like box plots and apply statistical methods, including mean, median, and standard deviation, to compare datasets, assess variability, and uncover patterns in data distributions and models.

Concept C3.2
Concept C3.2

Comparing variability

Examine differences between groups by analyzing measures of spread, such as range and standard deviation. Utilize visualizations like box plots and apply statistical methods, including mean, median, and standard deviation, to compare datasets, assess variability, and uncover patterns in data distributions and models.

Concept C3.3
Concept C3.3

Understanding sources of variability

Recognize measurement errors and natural variability in data. Assess data quality, identify outliers, and refine models using statistical and contextual analysis.

Concept C3.3
Concept C3.3

Understanding sources of variability

Recognize measurement errors and natural variability in data. Assess data quality, identify outliers, and refine models using statistical and contextual analysis.

Concept C3.4
Concept C3.4

Variability in our computational world

Explore how AI model outputs vary based on training data, labeling, and bias. Understand how generative AI and pre-trained models use large datasets to make inferences and how variability in data impacts outcomes.

AI Literacy
Concept C3.4
Concept C3.4

Variability in our computational world

Explore how AI model outputs vary based on training data, labeling, and bias. Understand how generative AI and pre-trained models use large datasets to make inferences and how variability in data impacts outcomes.

AI Literacy

Developed by our coalition

Coalition organizers