Concept C3.4
AI Literacy

Variability in our computational world

Explore how AI model outputs vary based on training data, labeling, and bias. Understand how generative AI and pre-trained models use large datasets to make inferences and how variability in data impacts outcomes.

Classroom resources

Classroom Tip
Getting Started

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

6–8 Competencies

Conceptualize how the output of AI models such as LLMs vary along a variety of dimensions.

6-8.C.3.4a

Determine how labeling happens and how it affects the variability of the output of models. e.g., training set that labels dogs vs. cats, consider connections to bias

6-8.C.3.4b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

9–10 Competencies

Acknowledge how variability in the training data for generative AI influences bias in its output. e.g., facial recognition, ownership of DNA data

9-10.C.3.4a

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

11–12 Competencies

Appreciate that many AI tools are pre-trained with large quantities of data so that inferences can be drawn on smaller sample sizes.

11-12.C.3.4a

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 3: Making Sense of Data - Analysis and Modeling

Welcome to the exciting part of data science—making sense of the information you’ve collected! This module focuses on how to analyze data to find patterns, understand what the numbers really mean, and start drawing conclusions.🔗

Analysis and Modeling isn’t about complex mathematics or advanced statistics. It’s about developing the thinking skills to look at data and ask, “What story is this telling me? What patterns do I notice? What questions does this raise?” Whether students are working with simple tally marks or sophisticated datasets, the fundamental thinking is the same.

Classroom resources

Support other teachers by sharing a resource

Do you have a lesson plan, video, or tip that could help others teaching this topic?

Developed by our coalition

Coalition organizers

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share a classroom resource

Suggesting a resource helps students around the world learn essential data science skills.

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.