Concept D2.4
Durable Skills

Relevant conclusions

Ensure that increasingly complex analysis steps remain useful for the original question, and that the method does not distract from the problem.

K–2 Competencies

Identify from among a set of given examples what types of data are needed to answer a given investigation question.

K-2.D.2.4a

Classroom resources

Classroom Tip
Getting Started

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

3–5 Competencies

Propose types of data and/or data comparisons that are relevant for answering a given investigation question.

3-5.D.2.4a

Identify types of data and/or data comparisons that are NOT relevant for answering a given investigation question.

3-5.D.2.4b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

6–8 Competencies

Generate an original statement that answers the original investigation question in a direct way and provides relevant statistical data to support one's statistical conclusion.

6-8.D.2.4a

Identify a statement that does NOT answer the original investigation question in a direct way and provides relevant and sufficient data to support one's statistical conclusion.

6-8.D.2.4b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

9–10 Competencies

Formulate a statement that directly addresses the original investigation question, incorporates relevant statistical data to substantiate the conclusion, and interprets the statistical results to explain their broader implications in practice. e.g., statistical claims are not solely about numbers, they also interpret what the results signify and why they are important for solving a problem or answering a question

9-10.D.2.4a

Identify statements that do NOT include descriptions of the data and context implications that address the original investigation question.

9-10.D.2.4b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

11–12 Competencies

Determine if a causal claim can be established based on the investigation's design (e.g., natural experiments, real-world observations) and describe the differences between expectations and the design.

11-12.D.2.4a

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

Classroom resources

Support other teachers by sharing a resource

Do you have a lesson plan, video, or tip that could help others teaching this topic?

Developed by our coalition

Coalition organizers

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share a classroom resource

Suggesting a resource helps students around the world learn essential data science skills.

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.