Concept D3.2
AI Literacy

Sample versus population

Given a dataset, identify constraints and opportunities for what can be logically inferred about a broader population.

Classroom resources

Classroom Tip
Getting Started

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

3–5 Competencies

Recognize that in some situations, a small amount of data can represent or estimate a larger unknown, saving time and effort. e.g., dice rolling, jars of jelly beans

3-5.D.3.2a

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

6–8 Competencies

Evaluate a population based on a sample by making informal arguments for the sample's sufficiency in answering the question.

6-8.D.3.2a

Identify potential weaknesses in a given sample that may limit its ability to represent a broader population or phenomenon.

6-8.D.3.2b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

9–10 Competencies

Analyze a population through a sample by clearly articulating how the chosen sampling method relates to the research question.

9-10.D.3.2a

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

11–12 Competencies

Evaluate the suitability of different sampling methods (e.g., random sample with or without replacement) for the specific question and available data.

11-12.D.3.2a

Identify situations in which data on the full population is easily available or even critical to answer a question of interest, and traditional sampling-methods are not required.

11-12.D.3.2b

Classroom resources

Classroom Tip
Getting Started
Thank you for your feedback.
Write more feedback

Data Science Starter Kit Module 4: Drawing Conclusions - Interpreting Problems and Results

Welcome to one of the most critical skills in data science—learning how to draw valid conclusions from data and understanding what those conclusions can and cannot tell us. This module focuses on the thinking skills that separate good data science from misleading claims.🔗

Interpreting Problems and Results isn’t about complex statistical tests or advanced mathematics. It’s about developing the intellectual honesty and critical thinking skills to say, “Based on this data, here’s what we can reasonably conclude, here’s what we’re not sure about, and here’s what we still need to investigate.”

Advanced Competencies

Identify machine learning methods such as supervised, unsupervised, and reinforcement learning, and discuss the pros and cons of each when data on the entire population or a very detailed sample with many variables is available.

Advanced D3.2

Classroom resources

Support other teachers by sharing a resource

Do you have a lesson plan, video, or tip that could help others teaching this topic?

Developed by our coalition

Coalition organizers

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share feedback on the Learning Progressions

Your feedback helps us improve these progressions for teachers around the world. Thank you!

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.

Share a classroom resource

Suggesting a resource helps students around the world learn essential data science skills.

Thank you! We’ve received your submission.
Oops! Something went wrong while submitting the form.